Laboratory for Molecular Diagnostics
Center for Nephrology and Metabolic Disorders
Moldiag Diseases Genes Support Contact

Homeobox protein Nkx-2.5

The NKX2-5 gene encodes a transcription factor which is involved in heart and thyroid development. Mutations cause various cardiac abnormalities and autosomal dominant congenital nongoitrous hypothyroidism 5.

Genetests:

Clinic Method Carrier testing
Turnaround 5 days
Specimen type genomic DNA
Clinic Method Massive parallel sequencing
Turnaround 25 days
Specimen type genomic DNA
Research Method Genomic sequencing of the entire coding region
Turnaround 25 days
Specimen type genomic DNA

Related Diseases:

Atrial septal defect 7 with or without AV conduction defects
NKX2-5
Conotruncal heart malformations
NKX2-5
Hypoplastic left heart syndrome 2
NKX2-5
Congenital nongoitrous hypothyroidism 5
NKX2-5
Tetralogy of Fallot
NKX2-5
Ventricular septal defect 3
NKX2-5

References:

1.

Reamon-Buettner SM et al. (2004) Somatic NKX2-5 mutations as a novel mechanism of disease in complex congenital heart disease.

external link
2.

Basson CT et al. (1999) Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome mutations.

external link
3.

Pauli RM et al. (1999) Ventricular noncompaction and distal chromosome 5q deletion.

external link
4.

Kasahara H et al. (2000) Loss of function and inhibitory effects of human CSX/NKX2.5 homeoprotein mutations associated with congenital heart disease.

external link
5.

Hosoda T et al. (1999) Familial atrial septal defect and atrioventricular conduction disturbance associated with a point mutation in the cardiac homeobox gene CSX/NKX2-5 in a Japanese patient.

external link
6.

Hiroi Y et al. (2001) Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation.

external link
7.

Habets PE et al. (2002) Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation.

external link
8.

Youssoufian H et al. (2002) Mechanisms and consequences of somatic mosaicism in humans.

external link
9.

None (2003) Somatic gene mutation and human disease other than cancer.

external link
10.

Jay PY et al. (2004) Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system.

external link
11.

Pashmforoush M et al. (2004) Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block.

external link
12.

Schott JJ et al. (1998) Congenital heart disease caused by mutations in the transcription factor NKX2-5.

external link
13.

Inga A et al. (2005) Functional dissection of sequence-specific NKX2-5 DNA binding domain mutations associated with human heart septation defects using a yeast-based system.

external link
14.

Reamon-Buettner SM et al. (2006) HEY2 mutations in malformed hearts.

external link
15.

Moskowitz IP et al. (2007) A molecular pathway including Id2, Tbx5, and Nkx2-5 required for cardiac conduction system development.

external link
16.

Mommersteeg MT et al. (2007) Pitx2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium.

external link
17.

Yadava RS et al. (2008) RNA toxicity in myotonic muscular dystrophy induces NKX2-5 expression.

external link
18.

Nimura K et al. (2009) A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome.

external link
19.

Mahlaoui N et al. (2011) Isolated congenital asplenia: a French nationwide retrospective survey of 20 cases.

external link
20.

Koss M et al. (2012) Congenital asplenia in mice and humans with mutations in a Pbx/Nkx2-5/p15 module.

external link
21.

Bolze A et al. (2013) Ribosomal protein SA haploinsufficiency in humans with isolated congenital asplenia.

external link
22.

Schulkey CE et al. (2015) The maternal-age-associated risk of congenital heart disease is modifiable.

external link
23.

Kostrzewa M et al. (1996) Integration of four genes, a pseudogene, thirty-one STSs, and a highly polymorphic STRP into the 7-10 Mb YAC contig of 5q34-q35.

external link
24.

Pease WE et al. (1976) Familial atrial septal defect with prolonged atrioventricular conduction.

external link
25.

Watanabe Y et al. (2002) Two novel frameshift mutations in NKX2.5 result in novel features including visceral inversus and sinus venosus type ASD.

external link
26.

McElhinney DB et al. (2003) NKX2.5 mutations in patients with congenital heart disease.

external link
27.

Hirayama-Yamada K et al. (2005) Phenotypes with GATA4 or NKX2.5 mutations in familial atrial septal defect.

external link
28.

Gutierrez-Roelens I et al. (2006) A novel CSX/NKX2-5 mutation causes autosomal-dominant AV block: are atrial fibrillation and syncopes part of the phenotype?

external link
29.

Chen Y et al. (2010) A novel mutation of GATA4 in a familial atrial septal defect.

external link
30.

Peng T et al. (2010) Mutations of the GATA4 and NKX2.5 genes in Chinese pediatric patients with non-familial congenital heart disease.

external link
31.

Wang J et al. (2011) A novel NKX2-5 mutation in familial ventricular septal defect.

external link
32.

Benson DW et al. (1999) Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways.

external link
33.

Goldmuntz E et al. (2001) NKX2.5 mutations in patients with tetralogy of fallot.

external link
34.

Rauch R et al. (2010) Comprehensive genotype-phenotype analysis in 230 patients with tetralogy of Fallot.

external link
35.

De Luca A et al. (2011) New mutations in ZFPM2/FOG2 gene in tetralogy of Fallot and double outlet right ventricle.

external link
36.

Stallmeyer B et al. (2010) Mutational spectrum in the cardiac transcription factor gene NKX2.5 (CSX) associated with congenital heart disease.

external link
37.

Dentice M et al. (2006) Missense mutation in the transcription factor NKX2-5: a novel molecular event in the pathogenesis of thyroid dysgenesis.

external link
38.

Lyons I et al. (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5.

external link
39.

Shiojima I et al. (1995) Assignment of cardiac homeobox gene CSX to human chromosome 5q34.

external link
40.

Komuro I et al. (1993) Csx: a murine homeobox-containing gene specifically expressed in the developing heart.

external link
41.

Himmelbauer H et al. (1994) High-resolution genetic analysis of a deletion on mouse chromosome 17 extending over the fused, tufted, and homeobox Nkx2-5 loci.

external link
42.

None (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila.

external link
43.

Turbay D et al. (1996) Molecular cloning, chromosomal mapping, and characterization of the human cardiac-specific homeobox gene hCsx.

external link
44.

Orphanet article

Orphanet ID 123797 external link
45.

NCBI article

NCBI 1482 external link
46.

OMIM.ORG article

Omim 600584 external link
47.

Wikipedia article

Wikipedia EN (Homeobox_protein_Nkx-2.5) external link
Update: Aug. 14, 2020
Copyright © 2005-2024 by Center for Nephrology and Metabolic Disorders, Dr. Mato Nagel, MD
Albert-Schweitzer-Ring 32, D-02943 Weißwasser, Germany, Tel.: +49-3576-287922, Fax: +49-3576-287944
Sitemap | Webmail | Disclaimer | Privacy Issues | Website Credits